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The work performed on this grant during the first grant year has fallen into two

categories:

1. Theoretical studies of neural networks; and Approved for public release;
distribution unlimited.

2. Fundamental studies of optical interconnects.

We report on the progress in both of these areas in the the two following sections.

Neural Networks

The research this year focused on understanding the global as well as local properties

of the neural network model. Global properties are the dynamics of the network,

convergence properties, computational power and capacity. By local properties we

mean the theory of threshold logic elements, the basic building blocks of the network.

Here we mention only two main contributions this year. The first relates to the global

properties while the second to the local properties of the neural network model. The

details of these contributions appear in [1] and [2].

In [1] we investigated the relation between error-correcting codes and neural

networks. The motivationl['hii~d this worEkwas that a neural network model can be

viewed as a decoder. The stable states correspond to codewords, the 'probe vector

corresponds to the received vector, and convergence to the closest stable state

corresponds to Maximum Likelihood Decoding (MLD). We found several natural
.. y codes
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ways ef'connecting the concept of error correcting codes with the concept of neural

networks. In particular, we showed iha>the MLD problem in a linear block code is

equivalent to finding the global maximum of the energy function of a neural network

that can be easily constructed knowing the basis set of the code. IWealso have a dual

result: given a linear block code, we can easily construct a neural network in which

every local energy maximum corresponds to a codeword and every codeword

corresponds to a local maximum, thus solving the 'programming' problem for linear

codes. The results are generalized for both nonbinary and nonlinear codes.

In [2] we answered a fundamental question in the theory of threshold logic. Suppose

that instead of using a linear threshold (LT) element we use a polynomial threshold

(PT) element. A PT element computes a polynomial (instead of a linear form) with

the restriction that the number of terms in the polynomial is 'small' (the number of

terms is bounded by some polynomial in the number of variables). The question is:

what is the power of a PT element and how does it compare with that of a LT element?

The answer is that we do not gain much by using PT's instead of LT's. A 'small' two

layer network of LT's can do strictly more that a single PT element can do. In order to

answer this question we developed a novel technique based on harmonic analysis and

derived bounds on the number of terms in the PT representation. As a byproduct we

also found a new way of deriving counting results.

The above results are important to both the theory of neural networks and the area of

circuit complexity in the theory of computer science.

References

[1] J. Bruck and M. Blaum, "Neural Networks, Error-Correcting Codes and

Polynomials over the Binary n-Cube", accepted for publication in the IEEE
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[2] J. Bruck, "Harmonic Analysis of Polynomial Threshold Functions", submitted to

SIAM Journal on Discrete Mathematics.

Optical Interconnections

Our work on fundamental properties of optical interconnections contained two different

subtasks. First, we have nearly competed a study of the comparison of coaxial cable
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with optical interconnects for use within multiprocessor machines. The analysis is a
rigorous one, and considers many different cases regarding termination, source

impedance, etc. When complete, it will provide guidelines for when it is appropriate to

use optics for this type of interconnection and when it may not be.

A second task has been the examination of a recent paper by S.H. Lee and his group
in which projections of the advantages of optics at the intra-chip level of interconnects

were made. These projections were far more optimistic than our own previous

projections, and it was important to discover the difference between the two analyses

and the reasons for their different predictions. One difference lies in the fact that our

considerations were fundamental ones while theirs were more practical. However,

this difference did not explain the difference of the predictions. We discovered that,

while our own predictions had projected the capabilities of both optics and electronics

to the future, the San Diego group had projected only the capabilities of optics to the

future. Characteristics assumed of electronics were not similarly projected (for

example, 3 pim technology was assumed).

Future Activities

Our activities in the coming year will consist of the following:

1. Continuation of our fundamental theoretical studies of neural networks;

2. A beginning of a study of interconnect limits in GaAs technology (all of our

previous studies have been for silicon).

Publications and Presentations at Meetings

1. J. Bruck and J. Sanz, "A study on Neural Networks", International Journal of

Intelligent Systems, Vol. 3, pp. 59075 (1988)

2. J. Bruck and J.W. Goodman, "A Generalized Convergence Theorem for Neural

Networks and its Applications in Combinatorial Optimization", Proc. First IEEE
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3. J. Bruck and J.W. Goodman, "A Generalized Convergence Theorem for Neural

Networks", accepted for publication in IEEE Trans. on Information Theory.
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On the Power of Neural Networks for
Solving Hard Problems *

Jehoshua Bruck
Joseph W. Goodman

Information Systems Laboratory
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

Abstract

This paper deals with a neural network model in which each neuron
performs a threshold logic function. An important property of the model
is that it always converges to a stable state when operating in a serial
mode [2,5]. This property is the basis of the potential applications of the
model such as associative memory devices and combinatorial optimization
[3,6].
One of the motivations for use of the model for solving hard combinatorial
problems is the fact that it can be implemented by optical devices and
thus operate at a higher speed than conventional electronics.
The main theme in this work is to investigate the power of the model for
solving NP-hard problems [4,81, and to understand the relation between
speed of operation and the size of a neural network. In particular, it will
be shown that for any NP-hard problem the existence of a polynomial
size network that solves it implies that NP=co-NP. Also, for Traveling
Salesman Problem (TSP), even a polynomial size network that gets an
c-approximate solution does not exist unless P=NP.

The above results are of great practical interest, because right now it is
possible to build neural networks which will operate fast but are limited
in the number of neurons.

*Presented at the IEEE Neural Information Processing Systems Conference, Denver, Col-
orado, November 1987.
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1 Background

The neural network model is a discrete time system that can be represented by
a weighted and undirected graph. There is a weight attached to each edge of
the graph and a threshold value attached to each node (neuron) of the graph.
The order of the network is the number of nodes in the corresponding graph.
Let N be a neural network of order n; then N is uniquely defined by (W, T)
where:

* W is an n x n symmetric matrix, Wji is equal to the weight attached to
edge (i, j).

9 T is a vector of dimension n, Tj denotes the threshold attached to node i.

Every node (neuron) can be in one of two possible states, either 1 or -1. The
state of node i at time t is denoted by V,(t). The state of the neural network at
time t is the vector V(t).

The next state of a node is computed by:

S1 if Hi(t) _0
V,(t ± 1) --- sgn(t,(t)) = 1-1 otherwise (1)

where
Hi(t) = Wj, j(t) - T

j=1

The next state of the network, i.e. V(t + 1), is computed from the current
state by performing the evaluation (1) at a subset of the nodes of the network,
to be denoted by S. The modes of operation are determined by the method
by which the set S is selected in each time interval. If the computation is
performed at a single node in any time interval, i.e. I S 1= 1, then we will say
that the network is operating in a serial mode; if I S J= n then we will say that
that the network is operating in a fully parallel mode. All the other cases, i.e.
1 <1 S 1< n will be called parallel modes of operation. The set S can be chosen
at random or according to some deterministic rule.

A state V(t) is called stable iff V(t) = sgn(WV(t) - T), i.e. there is no
change in the state of the network no matter what the mode of operation is.
One of the most important properties of the model is the fact that it always
converges to a stable state while operating in a serial mode. The main idea in
the proof of the convergence property is to define a so called energy function
and to show that this energy function is nondecreasing when the state of the
network changes. The energy function is:

E(t) = VT(t)WV(t) - 2VT(t)T (2)
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An important note is that originally the energy function was defined such that
it is nonincreasing [5]; we changed it such that it will comply with some known
graph problems (e.g. Min Cut).

A neural network will always get to a stable state which corresponds to a
local maximum in the energy function. This suggests the use of the network as a
device for performing a local search algorithm for finding a maximal value of the
energy function [6]. Thus, the network will perform a local search by operating
in a random and serial mode. It is also known [2,9] that maximization of E
associated with a given network N in which T = 0 is equivalent to finding
the Minimum Cut in N. Actually, many hard problems can be formulated as
maximization of a quadratic form (e.g. TSP [6]) and thus can be mapped to a
neural network.

2 The Main Results

The set of stable states is the set of possible final solutions that one will get
using the above approach. These final solutions correspond to local maxima of
the energy function but do not necessarily correspond to global optima of the
corresponding problem. The main question is: suppose we allow the network to
operate for a very long time until it converges; can we do better than just getting
some local optimum? i.e., is it possible to design a network which will always
find the exact solution (or some guaranteed approximation) of the problem?

Definition: Let X be an instance of problem. Then I X I denotes the size of
X, that is, the number of bits required to represent X. For example, for X
being an instance of TSP, I X I is the number of bits needed to represent the
matrix of the distances between cities.

Definition: Let N be a neural network. Then I N I denotes the size of the
network N. Namely, the number of bits needed to represent W and T.

Let us start by defining the desired setup for using the neural network as a
model for solving hard problems.

Consider an optimization problem L, we would like to have for every instance
X of L a neural network Nx with the following properties:

* Every local maximum of the energy function associated with Nx corre-
sponds to a global optimum of X.

* The network Nx is small, that is, I NX I is bounded by some polynomial
inIX1.

Moreover, we would like to have an algorithm, to be denoted by AL, which given
an instance X E L, generates the description for Nx in polynomial (in J I)

3



time.

Now, we will define the desired setup for using the neural network as a model
for finding approximate solutions for hard proablems.

Definition: Let E.1o be the global maximum of the energy function. Let Eo,
be a local maximum of the energy function. We will say that a local maximum
is an c-approximate of the global iff:

E91 o- E l. <
E 910

The setup for finding approximate solutions is similar to the one for finding
exact solutions. For e > 0 being some fixed number. We would like to have a
network Nx, in which every local maximum is an c-approximate of the global
and that the global corresponds to an optimum of X. The network Nx, should
be small, namely, I Nx, I should be bounded by a polynomial in I X I. Also,
we would like to have an algorithm AL,, such that, given an instance X E L. it
generates the description for Nx, in polynomial (in I X I) time.

Note that in both the exact case and the approximate case we do not put any
restriction on the time it takes the network to converge to a solution (it can be
exponential).

At this point the reader should convince himself that the above description is
what he imagined as the setup for using the neural network model for solving
h.d problems, because that is what the following definition is about.

Definition: We will say that a neural network for solving (or finding an E-
approximation of) a problem L exists if the algorithm AL (or AL) which gen-
erates the description of Nx (or Nx,) exists.

The main results in the paper are summarized by the following two propo-
sitions. The first one deals with exact solutions of NP-hard problems while the
second deals with approximate solutions to TSP.

Proposition 1 Let L be an NP-hard problem. Then the existence of a neural
network for solving L implies that NP = co-NP.

Proposition 2 Let c > 0 be some fixed number. The existence of a neural
network for finding an f-approximate solution to TSP implies that P=,P.

Both (P=NP) and (NP=co-NP) are believed to be false statements, her.:e,
we can not use the model in the way we imagine.
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The key observation for proving the above propositions is the fact that a

single iteration in a neural network takes time which is bounded by a polynomial

in the size of the instance of the corresponding'problern. The proofs of the above

two propositions follow directly from known results in complexity theory and

should not be considered as new results in complexity theory.

3 The Proofs

Proof of Proposition 1: The proof follows from the definition of the classes
NP and co-NP, and Lemma 1. The definitions and the lemma appear in Chap-
ters 15 and 16 in [8] and also in Chapters 2 and 7 in [4].

Lemma 1 If the complement of an NP-complete problem is in NP,
then NP=co-NP.

Let L be an NP-hard problem. Suppose there exists a neural network that solves
L. Let L be an NP-complete problem. By definition, L can be polynomialy
reduced to L. Thus, for every instance X E L, we have a neural network such
that from any of its global maxima we can efficiently recognize whether X is a
'yes' or a 'no' instance of L.
We claim that we have a nondeterministic polynomial time algorithm to decide
that a given instance X E L is a 7no' instance. Here is how we do it: for X E L
we construct the neural network that solves it by using the reduction to L. We
then check every state of the network to see if it is a local maximum (that is
done in polynomial time). In case it is a local maximum, we check if the instance
is a 'yes' or a 'no' instance (this is also done in polynomial time).
Thus, we have a nondeterministic polynomial time algorithm to recognize any
'no' instance of L. Thus, the complement of the problem L is in NP. But L is
an NP-complete problem, hence, from Lemma I it follows that NP=co-NP. 03

Proof of Proposition 2: The result is a corollary of the results in [7], the
reader can refer to it for a more complete presentation.
The proof uses the fact that the Restricted Hamiltonian Circuit (RIIC) is an
NP-complete problem.
Definiton of RHC: Given a graph G = (V, E) and a Hamiltonian path in G.
The question is whether there is a Hamiltonian circuit in G?
It is proven in [7] that RIIC is NP-complete.

Suppose there exists a polynomial size neural network for finding an
c-approximatc solution to TSP. Then it can be shown that an instance X E

5
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RHC can be reduced to an instance X E TSP, such that in the network Nk
the following holds: if the Hamiltonian path that is given inX corresponds to a
local maximum in Nkt then X is a 'no' instance; else, if it does not correspond
to a local maximum in Nt, then X is a 'yes' instance. Note that we can check
for locality in polynomial time.
Hence, the existence of N±. for all XC E TS P implies that we have a polynomial
time algorithm for RHC. 0

4 Concluding Remarks

1. In Proposition 1 we let I W I and I T I be arbitrary but bouaded by a
polynomial in the size of a given instance of a problem. If we assume
that I IV I and I T I are fixed for all instances tb. a similar result to
Proposition 1 can be proved without using comrpiexity theory: this result
appears in [1].

2. The network which corresponds to TSP, as suggested in [61. can not solve
the TSP with guaranteed qual..y. However, one should note that all the
analysis in this paper is a ",orst case type of analysis. So. it might be that
there exist networks .,at h, re good behavior on the average.

3. Proposition I is geneTal to all NP-hard problems while Proposition 2 is
specific t, FSP. Both propositions hold for any type of networks in which
an i.eration takes polynomiai time.

,4. Clearly, every network has an algorithm which is equivalent to it, but an
algorThm does not necessarily have a corresponding network. Thus. if we
do not know of an algorithmic solution to a problem we also will not be able
to find a network which solves the problem. If one believes that the neural
network model is a good model (e.g. it is amenable to implementation with
optics), one should develop techniques to program the network to perform
an algorithm that is known to have some guaranteed good behavior.

Acknowledgement: Support of the U. S. Air Force Office of S(ientific Research
is gratefully acknowledged.
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Neural Networks, Error-Correcting Codes and
Polynomials Over the Binary n-Cube

Jehoihua Bruck * Mario Blaum
Informatiou Systems Laboratory IBM Almaden Research Center

EE Department, Stanford University 650 Harry Road
Stanford, CA 94305 San Jose, CA 95120

Abstract

We present several ways of connectirg the concept of error-correcting codes with the
concept of neural networks. We show that performing maximum likelihood decoding
in a linear block error-correcting code is equivalent to finding a global maximum of
the energy function of a certain neural network. We also show that given a linear
block code we can construct a neural network such that every local maximum of the
energy function corresponds to a codeword and every codeword corresponds to a local
maximum. We derive a representation theory for boolean functions and use it to
extend the results for nonlinear block codes. The connection between maximization
of polynomials over the n-cube and error-correcting codes is also investigated; our
results suggest that decoding techniques can be a useful tool for solving problems of
maximization of polynomials over the n-cube.

'Work done while the author was a summer student and a r, search stiii,nt associato at the IB.M .A-
maden Research Center. Partial support of the U.S. Air Force, Office of !,intific Resparch is grateiu,:;
ac know led ged,.
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1 Introduction
The main goal in the paper is to explore the connections between the three concepts in the
title.
A neural network is a computational model that has recently been attracting a lot of interest
because it seems to have properties that are similar to those of both biological and physical
systems. The computation that is performed in a neural network is a maximization of a so
called energy function. The state space of neural network can be described by the topography
which is defined by the energy function associated with the network.
The main problem in the field of error-correcting codes is to design good codes: codes that
can correct many errors and whose encoding and decoding procedures are computationally
efficient. An error-correcting code can be described by a topography, with the peaks of
the topography being the codewords. The decoding of a corrupted word, (a point in the
topography which is not a peak) is then equivalent to looking for the closest peak in the
topography.
The above analogy between the two subjects was the initial motivation for this work.
It turns out that both neural networks and error correcting codes can be described by poly-
nomials over the n-cube. Thus, the connection between the two concepts can be established.
The representation of error correcting codes using polynomials over the n-cube gives also a
new perspective of the subject that enables to derive some new proofs for known results.
The problem of maximization of polynomials over the n-cube is a known problem in opera-
tions research and computer science. The connection with error correcting codes suggests a
new tool for solving these problems, namely, decoding techniques.
The paper is organized as follows: In Section 2, we present some background on neural
networks. We review the basic definitions of the Hopfield model. We discuss stable states
and the different modes of operation of the network. We conclude the section by )roving
that finding a global maximum of the energy function of the network is equivalent to inding
a minimum cut in a certain graph. The generalization to energy functions of higher ,egree
is also reviewed.
In Section 3, we establish a connection between the Hopfield model and graph theo -etic
codes. We prove that maximum likelihood decoding in a graph theoretic code is equiva.ent
to finding the minimum cut in a certain graph. By the previous section, this implies that
maximum likelihood decoding in a graph theoretic code is equivalent to finding a maximum
of the energy in a neural network.
In Section 4, we extend the results of Section 3 to general linear block codes. The key idea
is to represent the binary symbols {0, 1} by the symbols 11,-1} with the operation being
multiplication instead of exclusive OR. A general energy function, not necessarily quadratic,
is defined based on the generator matrix of a given linear block code. We show that finding
the global maximum of this energy function is equivalent to maximum likelihood decoding
in the code. Some of the results are generalized for finite fields GF(p), p a prime. The
idea is to represent the elements as p-roots of unity. For the cases p = 3 and p = 5, the
energy function is generalized. For p = 3, maximizing the energy function is cquivalent to
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maximum likelihood decoding. The same is true for p = 5, but with respect to the Lee
distance. Several examples with Hamming and first order Reed-Muller codes are given.
In Section 5 we study the energy function associated with the parity check matrix of a code.
When this matrix is written in systematic form, we show that each codeword corresponds to
a local maximum of the polynomial associated with the parity check matrix, and that each
local maximum corresponds to a codeword. We interpret the results of this section as dual
of the ones in section 4 for defining the maximum likelihood problem.
In Section 6, several ways of representing boolean functions are discussed. A boolean function
is defined as a mapping f : {0, 1}1 -- {0, 1}. Given the results of the previous sections, we
are interested in representing it with the symbols 1 and -1. We show how to transform
a boolean function to an equivalent polynomial over {1, -1} and its inverse transform; a
boolean function to an equivalent polynomial over {0, 1} and its inverse transform; and a
polynomial over {1, -1} to a polynomial over {0, 1} and its inverse transform. The results
are used to generalize the results in Section 4 to nonlinear codes.
In Section 7, we consider the problem of solving unconstrained nonlinear 0-1 programs. This
is basically the problem of maximizing a polynomial on n variables, each variable being 0
or 1. It is known that this problem is NP-hard. The known solvable cases use the concept
of the conflict graph. We found that the family of polynomials associated with Hamming
codes results in a conflict graph which is not bipartite in general (i.e. for which an efficient
algorithm is not known). For the family of polynomials associated with Hamming codes
efficient recognition and maximization techniques (which are based on decoding techniques)
are presented.
A note regarding the notation. Since G denotes a graph (in graph theory) and a generator
matrix (in coding theory), we decided to put 'hats' on all notations which are related to
graphs. That is, a graph is denoted by (! - (V, E), while a generator matrix of a code is
denoted by G.

2 Background on Neural Networks

The neural network model is a discrete time system that can be represented by a weighted
and undirected graph. There is a weight attached to each edge of the graph and a threshold
value attached to each node (neuron) of the graph. The order of the network is the number
of nodes in the corresponding graph. Let N be a neural network of order n: then N is
uniquely defined by (W, T) where:

" W is an n x n symmetric matrix, W is equal to the weight attached to edge (i,j).

" T is a vector of dimension n, T denotes the threshold attached to node i.

Every node (neuron) can be in one of two possible states, either 1 or -1. The state of node i
at time t is denoted by Vi(t). The slate of the neural network at time t is the vector V(t).

3



The next state of a node is computed by:

( 1 if Hi(t) 0

V,(t + 1) = sgn(H,(t)) = -1 otherwise (1)

where

Hi(t) = y WjiVj(t)- T

The next state of the network, i.e. V(t+1), is computed from the current state by performing
the evaluation (1) at a subset of the nodes of the network, to be denoted by S. The modes of
operation are determined by the method by which the set S is selected in each time interval.
If the computation is performed at a single node in any time interval, i.e. I S 1= 1, then we
will say that the network is operating in a serial mode, and if I S J= n then we will say that
that the network is operating in a fully parallel mode. All the other cases, i.e. 1 <1 S 1< n
will be called parallel modes of operation. The set S can be chosen at random or according
to some deterministic rule.
A state V(t) is called stable iff V(t) = sgn(WV(t) - T), i.e. there is no change in the state of
the network no matter what the mode of operation is. One of the most important properties
of the model is its convergence property as summarized by the following proposition.

Proposition 2.1 [5,7,13] Let N = (WT) be a neural network, with W being a symmetric
matrix Then the network N always converges to a stable state while operating in a serial
mode, and to a cycle of length at most 2 while operating in a fully parallel mode.

The main idea in the proof of the convergence property is to define a so called energy
function and to show that this energy function is nondecreasing when the state of the
network changes as a result of computation. The energy function used in the proof of
Proposition 2.1 is:

E(t) = VT(t)WV(t) - 2VT(t)T (2)

A neural network when operating in a serial mode will always get to a stable state which
corresponds to a local maximum in the energy function. This suggests the use of the network
as a device for performing a local search algorithm for finding a maximal value of the energy
function [4,5,14]. Clearly, every optimization problem which can be defined in a form of a
quadratic function over {-1, 1}' as in (2), can be mapped to a neural network which will
perform a search for its optimum. One of the optimization problems which is not only rep-
resentable by a quadratic function but actually is equivalent to it is the problem of finding
the Minimum Cut in a graph [5,181. In order to make the above statement clear let us start
by defining the term cut in a graph.

Definition: Let G = (', k) be a weighted and undirected graph, with VV being a symmetric
matrix of the weights of the edges of G. Let l/ be a subset of V, and let V1-I V - l/,. The
set of edges each of which is incident at a node in V1 and at a node in V_ is called a cut in
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G.

Definition: The weight of a cut is the sum of its edge weights. A Minimum Cut (MC) of a
graph is a cut with minimum weight.

The equivalence between the MC problem and the problem of maximizing the energy func-
tion of a neural network is summarized by the following theorem (generalizations of this
equivalence can be found in [4,51). We include the proof in order to exhibit a principle that
will be useful in the sequel.

Proposition 2.2 [5,18] Let N = (WT) be a neural network with all thresholds being zero;
i.e, T 0 0. The problem of finding a state V for which the energy E is maximum is equivalent
to finding a minimum cut in the graph corresponding to N.

Proof: Since T 0 0, the energy function is:

IE II vEvj (3)

i=1 j=1

Let W ++ denote the sum of weights of edges in N with both end points equal 1, and let
W+- denote the corresponding sums of the other two cases. It follows that:

E = 2(W++ + W-- - W +- ) (4)

which also can be written as:

E = 2(W ++ + W-- + W + - ) - 4W +-  (5)

Since the first term in the above equation is constant (it is the sum of the weights of the
edges), it follows that maximization of E is equivalent to the minimization of W +-. It is
clear that W +- is the weight of the cut in N with V, being the nodes of N with the state
being equal to 1. 0

Hence, a neural network operating in a serial mode is equivalent to performing a local search
algorithm for finding a minimum cut in the network. Changing the state of a node in the
network is equivalent to moving it from one side of the cut to the other in the local search
algorithm.

The above definition of the model results in an energy function which is quadratic. The
definition of the model can be generalized to energy functions of a higher degree [1]. In the
general case, every neuron computes an algebraic threshold function which is equivalent to
checking which state (either 1 or -1) will result in a higher value of the energy function.

Example: Consider the energy function:

E = W 1 ,2 ,3 V 1 V 2 V 3 + W 1 ,2 V1 V 2 + WV 2 ,3 V 2 V 3 + VIV 1

5



For example, the generalization of (1) for node 1 is:

V(t + 1) = sgn(H(t))

where
HI(t)= W1 ,,3VV 3 + W1, 2V2 + W1

We will start by investigating the connections between quadratic energy function and error
correcting codes and then continue by looking at general energy functions.

3 Neural Networks and Graph Theoretic Codes

The main goal of this section is to establish the relations between neural networks and graph
theoretic error correcting codes. Let us start by defining the family of graph theoretic codes
(for more details see [8,17]).
Let G = (V, E) be an undirected graph, with V being the set of nodes of G and E being the
set of edges of G. A subset of the set of edges of d can be represented by a characteristic
vector of length I P [, with edge ej corresponding to the i's entry of the characteristic vector.
That is, every S C E can be represented by a vector to be denoted by 1,; such that:

1 ifeES (6)
0 otherwise (6)

Definition: The incident matrix of a graph G = (V, E), to be denoted by Dd, is a

I V I x I P I matrix in which row i is the characteristic vector of the set of edges incident
upon node i E 1V.

The following facts from graph theory [3] are the basis for the definition of the family of
graph theoretic codes.

Fact 1: The set of characteristic vectors which corresponds to the cuts in a connected graph
G = (V, E) firms a linear vector space over GF(2), with dimension (I V I -). The linear
vector space that corresponds to the cuts of a graph G will be denoted as Llie cut space of
G.
It is interesting to note that the circuits in a graph constitute also a linear vector space.

Fact 2: Given a connected graph C = (fi, E), the incident matrix of G has rank I V I -1.
Every row in DG is a characteristic vector of a cut, and every I V -1 rows of Dd form a
basis for the cut space of d.

Hence, given a connected graph d, the cut space of the graph is a linear block code [15,17] of
dimension I V 1 -1; thus, every graph has an [I E 1,j 1 I -1] code associated with its cuts.
The code associated with the cuts of a graph G will be denoted by Cd .
The codes associated with graphs, that is, cut codes and circuit codes, arc called graph
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Figure 1: A graph which corresponds to an (8,4) code.

theoretic codes. In this paper only cut codes will be discussed.

Example: Let C be the graph in Figure 1, C has 5 nodes and 8 edges. The incident matrix
of the graph G is:

0 0 1 10 0 0
1001101 (7)

0 0001011

Any 4 rows of D o form a basis of the cut space of d. For example, the matrix which consists
of the first 4 rows of D0 is a generator matrix of the error correcting linear block code
associated with 0. It is easily observed that C does not contain a cut with less than 3 edges
(besides the empty cut); thus, the code CC has minimum distance 3 and can correct one
error.
Given a graph (, an interesting question is, how to formulate the Maximum Likelihood
Decoding (MLD) problem of the code Cj in a graph theoretic language. That is, given a
graph 0 = (1', f), and a vector Y in {0, 1}I1A, what is the codeword in Cj that is the closest
to Y in Hamming distance. The following lemma will answer this question.

Lemma 3.1 Let 0 = (V, P) be a connected graph. Let Cd be the code associated with C.

Let Y be a vector over (0, 1 }I 1. Construct a new graph, to be denoted by Gy, by assigning
weights to the edges of G as follows:

W= (-1)Y (8)

Wi is the weight associated with edge i in d.
Then MLD of Y with respect to C0 is equivalent to finding the minimum cut in Gy.

Proof: Let us assume that Y contains a l's. Let M be an arbitrary codeword in C0 . Let
Ni' ' denote the number of positions in which M contains an i E {0, 11 and Y contains a
j E {0, 1}. Clearly,

a = N ° ' + N"'

Thus,
- N"' + N"0 = No' - a + N 1'0  (9)
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Minimizing the right hand side in equation (9) over all M E C6 is equivalent to finding a

codeword which is the closest to Y. On the other hand, minimizing the left hand side is

equivalent to finding the minimum cut in Gy. 0

From Lemma 3.1 it follows that:

Theorem 3.1 Let d = (/, E) be a connected g9aphi -Then MLD of a word Y with respect

to Cd is equivalent to finding the maximum of the energy function E of the neural network

which is defined by the graph Gy and all its threshold values are equal to 0.

Proof: By Lemma 3.1: MLD of Y with respect to CC is equivalent to finding the minimum

cut in Gy. By Proposition 2.2: Finding the minimum cut in a graph is equivalent to

finding the maximum of the energy function of a neural network defined by a graph with all

thresholds being zero. 0

Graph theoretic error correcting codes are limited in the sense that [8]:

d < 2 1E (10)

where d" is the minimum distance of the code. For example, a [7,4] Hamming code is not a

graph theoretic code because it has minimum distance 3, and A < 3. Hence, an interesting

question is whether the equivalence stated by Theorem 3.1 can be generalized to all linear
block codes. The energy function associated with the MLD of graph theoretic codes is

quadratic. It turns out that the energy function associated with the MLD of a general linear
block code is a polynomial over the n-cube. The discussion regarding the generalization is
the subject of Section 4.

4 Error-Correcting Codes and Energy Functions

In this section we will extend the results in Section 3 and show that the NILD problem of

linear block codes is equivalent to maximization of polynomials over the binary n-cube. It
will be also shown that the results can be generalized to non-binary codes.

4.1 The Binary Case

Consider a binary linear [n, k] error-correcting block code to be denoted by C [15,17]. The
code C is defined by a k x n generator matrix G. An information vector b (bl, b2, ... ,)

is encoded into the codeword v = (vI, v2, ... , v,) such that:

k
vj = ( bigiji 1 < j <_ n

i=1

where (D denotes Exclusive OR.
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The key idea in the derivation is to represent the symbols of the additive group Z2 as symbols
in the multiplicative group { 1, -1} through the transformation

a -

ioe.,

0-1, 1-4-1

We will use a different notation for the {1, -1} representation: The information vector
b = (bi, b2,..., bk) is represented as x = (Xl,Z2,... ,xk), where z = (-1)b , and the encoded
codeword v = (vi,v 2,. .,v,,) is represented as y = (Y1, Y2,.. ,y.). Hence,

k ky, = -1 = (-),- ' , i = -(-7"= X,
ti--- i=I

Example: Consider the [7,4] systematic Hamming code whose generator matrix is given by

1000011)

0= 01001 101010110)

00 0 1 1 1 1

Given the 4 information symbols (bi, b2, b3, b4), the corresponding codeword is

v = (bi, b2, b, b4, b2(Db3@(b4, b1(@b3@b 4, biE(b2(b 4)

In the {1,-IQ representation, this looks like

Y = (Xl, X 2 , X 3 , X 4 , X 2 X 3 X 4 , XIX 3 X 4 , XIX 2 X 4 )

where xj = (-1)'j.

Definition: In the {1, -1} representation of a code instead of a generator matrix, given
an information vector x = (xl, X2,... , x), we will use an encoding procedure x - y, where
Y = (YI,Y2,...,Yn) and yj = yj(XI,X 2 ,. .. ,xk) is a monomial. An encoding procedure is
systematic iff yi(xi, x 2 ,..., Xk) = xj for 1 j _ k.

In the example, the [7,4] Hamming code is described by the systematic encoding procedure:

(XI,,x, X3 ,X4 ) -4 (X , 2 ,x 3, X4, X2X 3X4 , XX 3 X4,x 2 X4 ) (12)

Another example, the first order (shortened) Reed-Muller code R(1,3) [15] is described by
the systematic encoding procedure:

(XI X2, X3 ) -4 (XI, X 2, X3, X1X 2, X1X 3, X2X3, X1X2X3 )

9



while the first order Reed-Muller code R(1, 3) is described by the encoding procedure:

(X0 , x,,X2,x 3) --* (Xo,oXXoX2,XOXX 2,XoX 3, xoxIx 3, XoX 2X3 ,XoXX 2x3 ) (13)

The generalization to any R(1, m) first order Reed Muller code is obvious.

Definition: Let G be a k x n matrix of l's and O's. The polynomial representation of G
with respect to a vector w E {1, -1}", to be denoted by Ew, is:

n k

Ew(X) = w 'I xS.' (14)
j=l i=l

Consider the linear block code defined by the generator matrix G (or equivalently by the
encoding procedure associated with G). The polynomial representation of G, i.e. Ew(x),
will be called the energy function of w with respect to the encoding procedure x -+ y. Note
that Ew(x) = w . y(x).
To establish the connection between energy functions and linear block codes, we will prove
that finding the global maximum of Ew(x) is equivalent to MLD of a vector w with respect
to the code C.

Theorem 4.1 Given an [n, k] code C defined by an encoding procedure x --+ y, and a vector
w E {1,-1}n, the closest codeword (in Hamming distance) to w in C corresponds to an
information vector b = (bi, b2,..., bk) if and only if

Ew(b) = max Ew(x)

Proof: Notice that for any information vector x E {1, 1}k,

Ew(x) = _= wjy,(x)
{j :wj = yj(x)} I - I {J : wj #yj(x)} I

=n-21 {j :w # yi(x)} I
n - 2dH(w, y)

where dH denotes Hamming distance. This expression implies that EW(b, b2,. .. bk) will
achieve a maximum iff dH(w, y) achieves a minimum. 0

Example: Consider the [7,41 Hamming code, defined by the encoding procedure in (12).
Assume we want to perform MLD of the received word

10



Then,
EW(X, X 2 , X 3 , z4) = X1 -2 - 13 + X4 + 1213X4 - 113X4 + X112X4

The maximum of this polynomial occurs at Ew(1, -1, -1, 1) = 5. So, the received word is
decoded as (1,-1, -1, 1).

Example: Consider the R(1, 3) first order Reed-Muller code, defined by the encoding pro-
cedure in (13). Given the received word w = (wo,wj,..., w 7 ), the energy function is

Ew(xo,XI,X 2 ,X 3 ) = Xo(WO+WIXI + W 2 X 2 + W3X11 2 + W 4 X3 + WsxIX3 + w 6X2 X3 + W7X12X3)

= +EW(XIX 2, X3))

where

E(1, X2, X3) = W1z 1 + W 2X2 + W 3 X1 1 2 + W4 X3 + W 5X1 X 3 + W6X2X3 + W7XlX2X 3

Hence, it is enough to find

max Ew(XI,X 2 ,X 3) I
X1,X2,X3E{1,-1}

If the energy that corresponds to the maximum is positive, then o= 1, otherwise, x, -1.
Assume we receive w = (-1,1,1,-1, 1, 1,1, -1). We have,

Ew(X1 ,X 2 , X3) = X1 + X2 - X112 +X3 + X113 + X2X3 X112X3

then
max Ew(x,,z 2 ,X 3 ) 1= E.(1, 1, 1) = 3X1 ,X2,X3E(l,-1 }

Since the energy is positive, the received word is decoded as (1, 1, 1, 1). In this case the
decoding is not unique, since the maximum is achieved at more than one point.

Given an encoding procedure, we can use the same argument as in Theorem 4.1 to determine
the minimum distance of the code.
Consider the encoding procedure

X = (X1,12i.. .,Xk) Y= (Yl,Y2,.. .,Y-)

and the energy function with w = (1, 1,..., 1)

E(xl,X2,...k) Yl + Y2 + " + Y.

As before,
E(xi,x2,...xk) = n - 2dg((1l ... 1),(yI,y2,...,Yn))

and
min dH ((Il ... l),(yI,y?,. . . ,yn))

(X1,x 2 . Xk)96(11 ...1)

11



occurs at
o tM max E(x, x,..., xk)(XI , ,.... ZOOM ... 1)

So, the conclusion is that d* (the minimum distance of the code) is given by

n-M ,t" = -- -(15)
2

Example: For the [7,4] Hamming code,

M = Ima + z 2 + X 3 + X 4 + X 2 X 3 X 4 + XIX 3 X 4 + XlX 2 X 4 = 1

so
& n-M 7-1d'- - =3

2 2
Example: For the R(1,3) first order Reed-Muller code,

M = max Xo(1 + xI + X2+XlX2 + X3 + X3 + X 2X3 + XX 2x 3 ){ ZO,X, ,2 ,-3 )0 (111 )

which can be written as,

M - max Xo(l + xi)(1 + X2 )(1 + X3 ) (16)(0O,zl ,X2 ,X3 )#(I 11 ')

The maximum in (16) is M = 0, because at least one of the xi's ( for i > 1) must be equal
to-1. Thus,

n-M 8

2 2
The same argument can be used for any R(1, m) code, giving

2"
d*= =2 m

4.2 Generalization to Non-Binary Codes

Consider now a linear [n, k] error-correcting code over a field GF(p), p a prime. Let G be
the generator matrix of the code. Then k symbols in Zp (bi, b2 ,..., bk) are encoded into
codeword v = (vI, v 2,. .. ,v,) as follows,

k

Vj = E_ bmg,(modp), 1 < J < n
m=1

Again, the key idea is to use the multiplicative representation: let u be the ptli root of unity,

u = e

12



The additiv-group Z, can be represented as a multiplicative group of p-roots of unit v through
the transformation a -+ u .
In the multiplic.itive vepresentat;on the k information symbols (L1 , h2, ... , i) ,.re repreented
as

(X1, . k) = (UbU . b

so the encoded codeword v = vi, , v,) is representtd as , =. (y...,...... y,) where

Y; = U U .,:.

vn=1 ,f= I

Example: Consider the [4,2] te-tnary Hamn~ng code whose generator nla~iix is

Given the two information symbols (bi, 2), the corresponding codeword -s

v = (b1, b2,2b6 + 2b 2(mod3),&2.z

In the multiplicative representation, this becomes
• 2

Y = (Xl,X2,Xl 2 ,X 2 )

where xj= ub ,u=e 3.

Hence, as for the binary case, we can represent a code ot, a ,Ield with p elemerit, ra nrime)
by an encoding procedure. The elements are now p roots of unity. So, given k information
symbols, we have the 1-1 assignment

X = (X, X2,...Xk) -- + Y = (Y, Y2,...Yn)

where yj = yj(xI X2, ... , Xk) is a monomial.

We will show that for p = 3 or 5, there are easy expressions of the energy function tha"
generalize the binary case (p = 2).
We start by redefining the energy function. Given an encoding procedure

x = (X,,X2,...Xk) - Y = (Y,,Y2,...Y,)

and w = (wI, L 2 , ... ,w,) a vector whose entries are pth roots of unity, we dhii, 1!;,,.
function as follows:

E(x)- = [ (R y,)J + [-( 2y2)J + + [-R(L ,,Yn)

13



where Rx) denotes real part. r irv--eer ,art anti r -izat: -'*~ of r.
NoL~ce that this energ-v func.-q- ,incjd-,'wt Wth~l.. :. that rase, ?1 , -1).
Before proceeding further, I-" & recall the 1ciiXionjg' *' o-'tanrr 171

Definif.;on- Tlhe Lce we igh' oi an "I-tuple (aa,. . , i: C 4. p a prime, is defined as

Where

The [Ir di tance between two ni - Iupifes is defined as the Lee weight of their difference.

We study the cases p = 3 and p 5From now on, x - y denotes an encoding procedure

t hat defines a code C, and x apd y ;.re vectors of length k and it, respectively, of 3 or 5 roots

We are going to prove two theoremi-s. The first one is simiflar to Theorem 4.1. It states that
\II.1) in a ternary code is rejuiaiaent to the maximization of the energy function in (17). The
iecond theorem states somet-11111 s.itniar for codes on the 5 roots of unity, but wvith respect
to the Lee distance.

Theo rem 4.2 Ic!t p =3. a h.then b is the closest codeword (in Hamming distance) to a
word u; if a7,d onlY -f

Ew(a) = maxEw(x)

SProof: Similar to that of Theorem 4.1. El

Example: (Thiqider again the [4,2] ternary Hamming code. Assume W (u, it', 1, u) is

recelved it, = r then

E,(12 = [R,(u Xl)J + LR(UX2)J + [ 1xx) + L~uX2)]

It can he easilv verifiedl that max Ew(xl, X2) = Ew(u, U2) =2, so w is decoded as (it, it').

Theorem 4.3 Let p =5, a --* b, then b is the closest codewvord (in Lee dislan cc) to a wcord
.~If and only if

Ew(a) =maxEw(x)
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Proof: Using the definition of the energy function,

Ew(a) = I {j : ojbi = 1} I - I {J: Ojbj = w 2 
or w 3} I

= n- I {J :jbi = w or W'} I - 2 I {J: LZi = U or W 3} I
= n - dL(w, b)

where dL denotes Lee distance.
Hence, Ew(a) reaches a maximum if and only if dL(w, b) reaches a minimum. 0

Example: Consider the [6,2] code on Z5 generated by

G=1 2 3 4 1 0)
1 1 1 1 0 1

The corresponding encoding procedure, taking the symbols as 5 roots of unity, is given by

(XI,X2) -+(X1X2,,X1X2,X12,zXX,,X,,2)
(U2, U4 ( 1, , , ) -, 2wi

Assume w - (u2,u4, 1,u3,u, 1) is received, where u = e r. The energy function is then

Ew(XI,X2) = M~u XlX2 )J + L3?(uIXx2)J + Lz(X'lX2)J + 04 (uXx2J + [LJ(ux)+ L3?(X2)J

It can be verified that the maximum occurs at E (u2, 1) = 4, so w is decoded as (u2 , 1).

5 Representing Linear Codes as Stable States of En-
ergy Functions

Let C be a linear block code (over GF(2)) defined by the generator matrix G. Let Ec be a
polynomial over {1, -1} (energy function) with the property that every local maximum in
Ec corresponds to a codeword in C and every codeword in C corresponds to a local maximum
in Ec.
Consider the following question: given a code C defined by G, is there an efficient algorithm
to construct EC? This section describes the development of such an algorithm.

Consider the [n, k] linear block code C. Without loss of generality, let us assume that the
generator matrix G is given in a systematic form; that is,

G = [Ik: P] (iS)

where Ik is a k x k identity matrix, and P is a k x (n - k) matrix. The parity check matrix
of C is:

liT [=.] (19)

In-k
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By the definition of H, for all X E C,

XH T 0 (20)

where 0 in (20) is an all zero vector of length (n - k). Equation (20) can be written using
the polynomial representation devised in (14), with the vector of coefficients being the all-I
vector.

Lemma 5.1 Let E(X) be the polynomial representation of HT with respect to the all-1
vector. Then X E C iff E(X) = n - k.

Proof: k has (n - k) terms, and all the coefficients are equal 1. Hence, k = n - k iff all
the terms are equal to 1. 0

The lemma ensures that in the polynomial E every codeword corresponds to a global maxi-
mum (stable state). But does every local maximum correspond to a codeword?

Theorem 5.1 Let C be a linear block code, with G,H,Ec and E as defined above; then
is a polynomial with the properties of Ec. That is, X corresponds to a local maximum in E
iffX EC. -

Proof: One direction follows from the lemma. The global maximum of E is n - k; thus,
every codeword is a global (and a local) maximum.
The second direction follows from the fact that H has a sy';tematic form. The last n - k
variables in f; that is, Xk+l,... ,Xn, appear only in one term each. That is, Xk+j appears
only in the first term, XA:+ 2 appears only in the second term and so on. Assume there exists
a vector V which corresponds to a local maximum (which is not global). That is E'(V) = L,
where L < n - k. Hence, there exists at least one term in k(V) which is not 1. But this
term can be made 1 by flipping the value of the variable which appears only in this term.
This contradicts the fact that V is a local maximum. 0

Examples:

1. Consider the single parity check code, it is an [n, n - 11 code and

G = [In-, : i1_

H T = 1

where I, is the all-i vector of length n. Hence,

k(X) = XIX 2  X

It is clear that E(X) = 1 iff X E C. Also, !(X) = -1 for all X V C. Thus, local
maxima in t have one to one correspondence with codewords in C
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2. Consider the simple repetition code, it is an [n, 1] code and

G = [1, 11]

H = [1.-, : I.-,]

And
(X) = X 1 (X 2 + X 3 + ... + X.)

It is clear that there are two stable states in E above, the all-1 and the all-(-1) vectors.

3. Consider the [7,4] Hamming code (see also Section 4),

110
101
011

HT= 1 1 1 (21)
1 0 0
0 1 0

0 0 1

E(X) = X, X2X, Xs + X XaX, Xg + X2 X3X, X7 (22)

Again, the polynomial in (22) has the [7, 4] Hamming code as the set of its local
maxima.

To summarize, given a linear code C the algorithm for constructing a polynomial EC is as
follows:

1. Construct the systematic generator matrix of C by performing row operation on the
generator matrix G.

2. Construct the systematic parity check matrix of C, according to (19).

3. Construct P, which is the polynomial representation of H T with respect to the all-1
vector. By Theorem 5.1, let E, = P.

A few remarks and generalizations regarding the above development:

1. The construction described above also works for cosets of linear codes. Let W be the
vector of length n - k of the coefficients of k. In the above construction we chose
w to be the all-1 vector, and got that Ec -- & Let d be a coset of C, and let S

I be the syndrome which corresponds to e. It can be proven (basically as in the proof

of Theorem 5.1) that there is a 1-1 correspondence between local maxima of the
polynomial representation of H T with w = S and the vectors in the coset .
Clearly, the syndrome which corresponds to the code C is the all-1 vector ( remembering
that in the transformation in Section 4, 0 goes to 1).

17
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The above construction (with respect to the one suggested in Section 4) is a dual
way of defining the MLD problem. Consider a linear block code C, defined by its
parity check matrix H. Given a vector V, the MLD problem can be defined as finding
the local maximum in EC which is the closest to V. Or equivalently, finding a local
maximum of the energy function associated with the syndrome (corresponding to V)
that is achieved by a vector of minimum weight.

6 Boolean Functions, Polynomials and Codes

In this section the representation of boolean functions as polynomials over the field of real
numbers is investigated. In view of the results in Section 4, applications of the derived
representation to coding theory are also investigated. Although a part of the material in this
section is known (see for example [15,16]), we include the detailed derivation as we believe
that it is novel with regard to the mode of presentation. Let us start by some definitions
and notations.
Definition: A boolean function f on n variables, is a mapping,

f: {0, 1}" - {O,1}

As in section 4, it is useful to define boolean functions using the symbols '1' and '-1' instead
of using the symbols '0' and '1', respectively.
Definition: A Hadamard matrix of order m, to be denoted by H,, is an m x m matrix of
+1's and -l's such that:

HmH r = ml, (23)

where Im is the m x m identity matrix. The above definition is equivalent to saying that
any two rows of H are orthogonal.
Hadamard matrices of order 2k exist for all k > 0. The so called Sylvester construction is as
follows:

H - [1]

H2=

H2=+ [H " 
H 2 ] (24)-- H2- -H2n

Definition: Given a boolean function f of order n, Pf is a polynomial (with coefficients
over the field of real numbers) equivalent to f iff for all X E {1, -1}':

f(X) = Pf(X)

Problem: Given a boolean function f of order n, compute P - a polynomial which is
equivalent to f.
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As an example, let f = X1 ( X2; that is, f is the XOR function of two variables. It is easy
to check that in the {1, -1} representation P = X1 2.
Notice that for every boolean function f, the polynomial P is linear in each of its variables
because x2 = 1 for x E {-1, 1}. It turns out that every boolean function has a unique rep-
resentation as a polynomial. This representation is derived by using the Hadamard matrix,
as described by the following theorem.

Theorem 6.1 Let f be a boolean function of order n. Let P be a polynomial equivalent to
f. Let A denote the vector of coefficients of P. Let P denote the vector of the 2" values of
P1 (and f). Then:

1. The polynomial P always exists and is unique.

2. The coefficients of P1 are computed as follows,

I
A = 1H ,P

Proof: The proof is constructive. The idea is to compute A by solving a system of linear
equations. Let us start by computing the coefficients of Pf, for f being a function of one
variable.

P = a0 + a1x1

and,

P1 (1) = ao+a,

P1(-1) = a0-a,

clearly,

P = H2A
and by (23),

1
A = jH 2P f,26)

Claim: The above result can be generalized to n variables as follows:

P-- H2. A 27)

The proof is by induction. The case n = 1 was proven above. Assume (27) is ":,c for
n. Clearly, every polynomial of n + 1 variables can be written as a combinat<>- two
polynomials of n variables each,

P(x,,..,X+,) = P(X,..,X) +X,+,P(,..8
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X 3  Z 2  X1 f

1 1 1 1
1 1 -1 1
1 -1 1 1
1 -1 -1 -1

-1 1 1 1
-1 1 -1 -1
-1 -1 1 1
-1 -1 -1 -1

Figure 2: the truth table of f.

There are two possibilities, either x,,+1 = 1 or z,+l = -1. Hence, by the induction hypothesis
(27), the system of linear equations for n + 1 variables becomes:

P 2-H- ]A (29)

Following from the recursive definition of Hadamard matrices (24),

P = H2.+ A (30)

Hadamard matrices are nonsingular; thus, for any given f a unique P (defined by the vector
of coefficients A) always exists. 0

Example: Consider the function f of 3 variables,

f = (xi A x3 ) V (xi A x 2) (31)

The truth table of f appears in Figure 2 (note that a logical 0 is mapped to 1, and a logical
1 is mapped to -1). By Theorem 6.1,

P! = 18(2 + 6xi + 2x 2 - 2xjx 2 + 2X3 - 2xjx 3 + 2x 2x 3 - 2xlx 2x 3 ) (32)

A few remarks concerning the above method:

1. Special care should be taken with respect to the the order by which the values of f are
specified in P. The function f should be specified according to the natural order with
the highest index being the most significant bit (as in Figure 2).

2. A monomial can be described by a vector of l's and -l's with a variable appearing in
the monomial iff it corresponds to -1. For example, (-1,-1, 1) corresponds to X3 X2.
Using this this description, the monomials of P! appear according to the natural order
with the highest index being the most significant bit.
In (32) the terms are written according the order they appear in A for 3 variables.
This order will be denoted as the natural order.
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3. The above method is applicable not just to boolean functions but to any function of
the form f : {1,-11'n - R.

The representation theory developed above holds also if one is interested in the question
of finding an equivalent polynomial, over {0, 1}, of a boolean function. To see this, simply
observe that any monomial over {(1, -1} can be written as a polynomial over {0, 1} by the
change of variable x = 1 - 2u, as follows:

k kri X, = 1 + E(-2)'E HI uj (33)
=1 i=1 S, jESi

with Si being a subset of {1,..., k} with i elements.
For example,

XX2X 3 -= 1 - 2(u, + u2 + u3) + 4(uIu2 + tUu3 + u2u3 ) - 8uIu 2u 3

The question is: what is the form of the transformation matrix from a boolean function to
its equivalent 0-1 polynomial? To answer this question it is useful to use the same technique
as in Theorem 6.1. That is, to define the transformation recursively.

Lemma 6.1 Let A be the vector of the coefficients of a polynomial over {1,-1}", with the
coefficients ordered according to the so called natural order. Let A be the the vector of the
coefficients of a polynomial over {0, 1}' which is equal to the polynomial associated with A.
Then

A=F2 -A

where F2n is defined recursively as follows:

F1 =f1]

F2= i]F2 = 0 -2
F2nI [ F2"  F2n 34

= 0 -2F1 ,] (34)

And also,

F- 1 0.5

F- = [ 0 -0.5]

[F ,-' 0. 5F;: ]
F - [0o -O.SF;] (35)
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Proof: The proof is by induction, using the same arguments as in Theorem 6.1. 0

Using the above lemma, we can formulate the following theorem which is the equivalent of
Theorem 6.1 for the {0, 1} case.

Theorem 6.2 Let f be a boolean function of order n. Let Pf be a polynomial over {O, 1 }'
which is equivalent to f. Then a unique P always exists and is computed as described in
the following proof.

Proof: The existence and uniqueness of P1 follows from Theorem 6.1. By Theorem 6.1
and Lemma 6.1,

A = F2.H; 1 P (36)
Let L et/f ,2- d d F . H j .'

Then, by the recursive definition of F and H,
I ~ F 2,,i n H :T ' ( 37

0=-2F2. H.' _H .J 37

Performing the multiplication above in blocks results in,

HI2,+ 2 -FHf F,0HJ (38)

Thus, the recursive definition of H is as follows:
H/, =[1)
H/2=[110]

ft-1  1

- H[,p 01H2,+1 = -1/'- //...- (40)2[

H2n+' = / t2 / ('10)

To summarize, we derived the following transformations and presented them in a recursive
form,
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1. From a boolean function to an equivalent polynomial over {1, -1, and the inverse
transformation (24).

2. From a boolean function to an equivalent polynomial over {0, 1Q by (39), and the
inverse transformation (40).

3. From a polynomial over {1, -1} to a polynomial over {0, 1} by (34), and the inverse
transformation (35).

The representation theory developed above can be used for representing error-correcting
codes in a way that generalizes the representation that is described in Section 4. Consider
the linear [n, k] block code C. The code C can be represented by viewing each coordinate
of the code as a boolean function of k variables. A vector V E C iff there exists a vector
X E {1,-1}k such that

V/ = (AM, ),fb(X)...,f,,(X)

Clearly, the boolean functions associated with the coordinates of a linear block code are
determined by the basis by which the code is represented. For linear block codes, every
coordinate f, corresponds to an XOR operation of some variables (according to the basis
of the code). Thus, for every i, the boolean function fi can be transformed by the method
devised by Theorem 6.1 to an equivalent polynomial over {1, - 1 }k which consists of one
monomial only. By the same argument as in Theorem 4.1, the MLD of a given word W is
equivalent to solving the following maximization problem, with X E {1, -1 }k,

n

max (E Wif 1(X)) (41)
i=1

Observation 1: By Theorem 6.1, every monomial corresponds to a row in a Hadamard
matrix. Since every f, corresponds to a monomial it follows that every coordinate i of a
linear block code corresponds to a row in a the Hadamard matrix of order 2k . By definition,
the first order Reed-Muller code (see Section 4 ) consists of all the possible 2 k monomials.
Thus, the [2k, k] first order Reed-Muller code is the set of all rows of the Hadamard matrix
of order 2k. Hence, every linear block code is a punctured first order Reed-Muller code.

Observation 2: The MLD problem is equivalent to finding a codeword such that its inner
product with the received word is maximal over all codewords (using the { 1, -1 representa-
tion). By Observation 1, the MLD of a first order Reed-Muller code is equivalent to finding
an entry with maximal value in the vector H2,,W.
For a general linear block code: a linear block code is a punctured first order Reed-Muller
code (by Observation 1). Thus, we can construct a vector WV of length 2 ' (using IV) such
that it has zeros in alJ coordinates that do not correspond to a coordinate of the code. The
MLD problem of W is again equivalent to finding an entry with maximal value in the vector
H20k i. Hence, the Fast Iladamard Transform [15] can be used efficiently to decode any low
rate linear block code.
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Observation 3: The following simple facts about an [n, k] linear block code follow directly
from Observation 1:

e The vectors of length 2 k which represent the coordinates of a linear block code are
orthogonal since they correspond to columns of a Hadamard matrix.

* The number of l's is equal to the number of -l's in each coordinate since the coordinates
correspond to columns of a Hadamard matrix.

9 The minimum weight (distance) of a first order Reed-Muller code is 2k- 1 = 0.5n since
the codewords are the rows of the Hadamard matrix of order 2k

Observation 4: The MLD problem as defined by (41) holds also for nonlinear codes. For
nonlinear codes, a coordinate fi can consist of more than one monomial. For example,
consider the following nonlinear code of 4 codewords.

C = [(00100), (11111), (10101), (01011)]

Then,

fi = XIX2
fA = Xl

f3 = 0.5(-1 - X1 - 2 + xIx 2)

h= X

fS = 0.5(-1 + X1 + z 2 + xIx 2 )

From the above generalization, it follows that both for linear and nonlinear codes the MLD
problem is equivalent to a maximization of a polynomial over {1, -11. Hence, the following
rather surprising theorem follows:

Theorem 6.3 The following 3 problems are equivalent:

1. Maximization of polynomials with rational coefficients over the k-cube.

2. The MILD problem of an [n, k] linear block code.

3. The MLD problem of a block code not necessarily linear that consists of 2k codewords.

7 Solving 0-1 nonlinear programming problems using
decoding techniques

An unconstrained nonlinear 0-1 program [11] is a problem of the form:

max ( " X) (.12)

4i=l jES
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where Si is a subset of {1,..., n}, and Xi E {0, 1} for all i. Basically, the problem in (42) is
a problem of finding a maximum of a 0-1 polynomial. A special case of (42) is the quadratic
polynomial over 1-1, 1) which was presented in Section 2. Clearly, every polynomial over
{-1,1} can be transformed to an equivalent one over {0,1) by a change of variable as
discussed in Section 6. The maximization of a quadratic polynomial over {0, 1} is known to
be an NP-hard problem [6]. One of the ways to prove it is by showing that the Maximum
Cut in a graph problem can be reduced to it. The reduction is based on the same technique
which is used in Section 2 to show the equivalence between quadratic energy functions and
cuts in graph.
The problem in (42) was studied extensively [9,11). The main effort concentrated in identi-
fying special cases which are solvable in polynomial time [12] and in devising approximation
techniques [101.
The most common technique for solving unconstrained 0-1 programs is by transforming them
to the problem of finding the maximum weight independent set in a graph [2,19]. Finding
the maximum weight independent set in a graph is NP-hard, but there are some solvable
cases. For example, the problem is solvable in polynomial time (by min cut-max flow tech-
niques) if the graph is bipartite [2]. A known class of problems, like (42), which are solvable
in polynomial time, are those problems which correspond to finding the maximum weight
independent set in a bipartite graph.

Definition: Let G = (f', E) be a graph, S is an independent set of nodes in the graph iff
S C V' and no two nodes of S are connected by an edge. Suppose that every node in V is
assigned a positive integer called the weight of a node. The problem of finding an indepen-
dent set of nodes such that the sum of its weights is maximal over all possible independent
sets, is known as the maximum weight independent set problem.

T'he problem in (42) is transformed to the problem of finding the maximum weight indepen-
dent set by using the concept of a conflict graph of a 0-1 polynomial [2,191. The idea will be
presented by the following example.

Example: Consider the following 0-1 polynomial,

f = -2X - 2X2 + 5X 1 X 2 - 4XIX 2X 3  (43)

One can show that f can be transformed to an equivalent polynomial such that all the terms
(except the constant one) have positive coefficients. The new polynomial involves both the
variables and their complements. This is done by noticing that:

X=1-x

Hence,

f = -4 + 2X1 + 2X 2  + X 1 X 2 + 4A'1X 2 X 3  (44)

Clearly, maximization of f is equivalent to maximization of f without the cornstant term, so
the constant term can be neglected.
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2XI 1 2 X X2

24 3 4X1 X2x3

Figure 3: The conflict graph associated with f.

The conflict graph, to be denoted by G(f), associated with a polynomial f has a node set
which corresponds to the terms of f, one node to a term (but the constant term). Two nodes
in G(f) are connected by an edge iff one of the corresponding terms contains a variable and
the other corresponding term contains the same variable complemented. The weight of a
node in G(f) is the coefficient of the corresponding term in f. Figure 3 shows the conflict
graph associated with f above.

The maximum weight independent set of 6(f) is {2, 4}; that is, the nodes that correspond
to XxX 2 and to X 1 X 2X 3. The weight of the set is 5, the assignment which achieves the
maximum corresponds to X 1 = 1, X 2 = 1 and C3 = 0. Thus, the maximum of f is -4+5=1.

One can prove that the above procedure works in the general case; that is:

1. Every maximum weight independent set in G(f) corresponds to a maximum in f (and
vice versa), with the values of the terms associated with the nodes in the set equal to
1.

2. In general the problem of finding the maximum weight independent set in a graph is
solvable in polynomial time for bipartite graph- (the g-ph in Figure 3 is bipartite).

3. The conflict graph associated with a polynomial is not unique, because a term can be
made positive by complementing any odd number of its variables.

In the following we will show how decoding techniques can be used to maximize 0-1 nonlinear
programs. Consider the 0-1 polynomials associated with Hamming codes (see Section 4).
The family of these polynomials will be denoted by HP (Hamming Polynomials) . It will
be shown, by an example, that HP is not contained in the family of polynomials related
to bipartite conflict graphs. Thus, HP is not a subset of the family of polynomials whose
maximization is known to be easy.
Consider the following polynomial over {0, 1}:

Al = 3-6X,-2X2-2X 3 -6X 4 +4(XX 2 +XI 3 ± X3 X' 4 +X 2 X 3 + X 2 X,I+ X 3.X 4 )-s.X 2x 3 X 4

(45)
The polynomial Al is not associated with a bipartite conflict graph, as stated in the next
proposition.
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Proposition 7.1 There does not exist G(M), a conflict graph associated with M. which is

bipartite.

Proof: The proof is straightforward, it follows from checking all the possible ways to convert

the sign of the cubic term. C

A maximum of a polynomial which belongs to liP can be found by applying the decoding

procedure for Hamming codes. Also, there is an efficient method to recognize if a given

polynomial is in HP. We will describe both the recognition procedure and the maximization

procedure by continuing with the above example.

Proposition 7.2 The polynomial At s a Hamming polynomial.

Proof:

1. Transform M to an equivalent polynomial over {-1, 1} by a change of variable U = 0.5(1 - X)

(as in Section 6).

A = (2 - U 3 + U4 + U1U 2 + UtL/ 3 + ('1, + ( 2 'LU 4  (46)

2. By the derivation in Section 4, it is clear that M is equivalent to MLD of

W = (1,1,0,0.0.0.0)

with regard to the code defined by the following generator matrix:

1 0 0 1 0 0 1(47)
0 1 0 0 1 0 1
0 0 1 0 0 1 i]

3. The matrix G can be brought to a systematic form, to be denoted by G, by row
operations:

0 1 0 0 1 0 1 (48)
0 0 1 0 0 1 1
0 0 0 1 1 1 0

From G we obtain 1. tie ystematic parity check matrix (see Section 5):

I 1 0 1 1 0 O0

1 1 0 1 1 0 1 0 (.19)
1 1 10 0 0 1

The polVn,,al .11 a llamuing polynomial because its parity check matrix contains

all the pio,,OiI, ,olu ins I but the all-O column).
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4. To decode w we will use the syndrome, that is:

wrT = (0, 1,0)

The error is in the location which correspond to the row in Hr that is equal to the
syndrome. Hence, the result of the decoding is: (1, 1, 0,0, 0, 1,0). The maximum is
attained at X* = (1, 1, 1, 0), and M(X*) = 5.

By the above procedure we proved that M is in HP and found its maximum. 0

A few remarks with regard to the above procedure:

1. The procedure in the above proof can be applied to a general 0-1 polynomial. Consider
the polynomial representation over {-1, 1} (the one obtained after step 1 above), a
necessary condition that a polynomial is in HP is that the absolute values of the
coefficients in the {-1, 1} representation are equal (the constant is neglected).

2. The complexity of the recognition process is determined by the complexity of the trans-
formation from the {0, 1} representation to the {1, -1} (step 1). This transformation
is exponential in the degree of the polynomial over {0, 1}.

By Section 4, maximization of polynomials over {-1, 1} with coefficients in {-1,1 } is equiv-
alent to MLD problem of linear block codes. The generalization to polynomials that have
integer (or rational) coefficients follows immediately by expressing a term with a coefficient
being equal to a (a positive integer) as a identical terms with coefficients equal to 1.

To summarize, we have established a technique for solving 0-1 nonlinear programs by decod-
ing techniques. In particular, for the family of Hamming polynomials: it was proven that
this family of polynomials is not a subset of the family of polynomials which are associated
with bipartite conflict graphs, and both a recognition procedure and a solution procedure
were derived.
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Harmonic Analysis of Polynomial Threshold

Functions *
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Abstract

A Boolean function is polynomial threshold if it can be represented as a sign function of a

polynomial that consists of a polynomial (in the number of variables) number of terms. The

main result is showing that the class of polynomial threshold functions (which we call PT 1 )

is strictly contained in the class of Boolean functions that can be computed by a depth 2,

unbounded fan-in polynomial size circuit of linear threshold gates (which we call LT 2 ).

We use harmonic analysis of Boolean functions to derive a necessary and sufficient condition for

a function to be an S-threshold function for a given set S of monomials. We use this condition

to show that the number of different S-threshold functions, for a given S, is at most 2n51. i

These results turn out to be a generalization of known results for linear threshold functions.

Based on the necessary and sufficient condition we derive a lower bound on the number of

monomials in a threshold function. The lower bound is expressed in terms of the spectral

representation of a Boolean function. We find that Boolean functions that have an exponentially

small spectrum are not polynomial threshold. We exhibit a family of functions that has an

exponentially small spectrum; we call them 'semi-bent' functions. We construct a function that

is both semi-bent and symmetric to prove that PTI is properly contained in LT 2 .

We also extend the lower bound technique to depth 2 circuits of linear threshold gates.

*Submitted to SIAM Journal on Discrete Mathematics, 1988.
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1 Introduction

A Boolean function f(X) is a threshold function if

{ 1 if F(X) > 0
f(X) = sgn(F(X)) = -1 F(X) <0

where

F(X)= w.X'
0,E{o,1)

and

Throughout this paper a Boolean function will be defined as f n{1,-1} - {1,-1};

namely, 0 and 1 are represented by I and -1, respectively. It is also assumed, without loss

of generality, that F(X) 3 0 for all X.

A threshold gate is a gate that computes a threshold function. It can be shown that any

Boolean function can be computed by a single threshold gate if we allow the number of

monomials in F(X) to be as large as 2n. Although such a result is not interesting by itself,

it stimulates the following natural question: What happens when the number of monomials

(terms) in F(X) is bounded by a polynomial in n?

The question can be formulated by defining a new complexity class of Boolean functions. This

class, called PT for Polynomial Threshold functions, is made of all the Boolean functions

that can be computed by a single threshold gate in which the number of monomials is

bounded by a polynomial in n. The main goal of this paper is the study of this complexity

class and its relations with other known complexity classes of Boolean functions.

More precisely, let S C {0, 1}"; a Boolean function f is an S-threshold function if there

exist integers that we call weights (the w ,'s) such that f(X) = sgn(F7IEs wcX"). Hence, a

Boolean function f{X) is in PT if there exists a set S, with I S bounded by polynomial

in n, such that f(X) is S-threshold. Notice that there is no restriction on the size of the
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weights.

A related class of functions is the class of linear threshold functions ^6. 10]. A Boolean

function is linear threshold if it is S-threshold with S corresponding to the constant and

linear monomials. We define LT to be the class of functions that are computable by a single

linear threshold gate.

The next step is to define complexity classes which relate to circuits. Define LTd (PTd) to

be the class of Boolean functions that can be computed by an unbounded fan-in polynomial

size circuit of depth at most d which consists of linear (polynomial) threshold gates.

Recently, there has been a considerable interest in study of the computational model of

bounded depth unbounded fan-in polynomial size circuits that consist of linear threshold

gates [5, 11, 13]. This interest follows from recent results in complexity of circuits (7, 12, 15]

which indicate that MAJORITY (hence, linear threshold functions) can not be computed

by a bounded depth unbounded fan-in polynomial size circuit that consists of V, A, NOT

and PARITY gates. Thus, the next natural step in the analysis is adding MAJORITY as a

possible gate in the computational model. Notice that in the results in [5] the weights are

bounded by a polynomial in n. To make the distinction from the case in which the weights

are not bounded we put 'hats'. Namely, LTd and PTd correspond to circuits with bounded

weights. Using this notation, a related result in [5] is:

LT 1 C LT 2 C LT 3

In this context, the study of circuits of polynomial threshold funct ions can be viewed as study

of a model in which a single gate is rather powerful. Namely. there is no 'trivial' function

that cannot be computed by a single gate. For example, PARITY, EXACTk (output -1 iff k

of its inputs are -1) and the characteristic function of a linear subspace (code) [1, 9] are all

in PT but none of them is in LT (see Appendix A). This fact suggests that the separation

between the classes PTI and PT 2 is not going to be an easy problem.

The main result in the paper is a characterization of the power of PTI with respect to the
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hierarchy of circuits of linear threshold functions. We have:

LT, c PT1 c LT2

which also implies that PT1 C PT 2.

Clearly, LT1 C PTI follows from the fact that PARITY is not in LT1 . But, PARITY(X) =

sgn(xlx2... x,,), hence it is in PT. Proving that PT1 g LT 2 is based on the observation

that PARITY does not require the full strength of a depth 2 circuit of linear threshold

elements and is described in Section 2. In order to prove that this containment is proper we

developed a technique for deriving lower bounds for the number of monomials in a threshold

logic function. This technique is based on the spectral representation of a Boolean function.

Most of the paper is devoted to the development of this technique and its applications.

In Section 3 we review the subject of harmonic analysis of Boolean functions [8] and show

that every Boolean function has a representation as a polynomial over the rationals and

hence as a threshold function.

In Section 4 we use the spectral representation of Boolean functions and derive a necessary

and sufficient condition for a function to be an S-threshold function for a given S. We use

this condition to show that the number of different S-threshold functions, for a given S, is at

most 2nISI . These results turn out to be a generalization of known results for linear threshold

functions [2, 6, 10].

In Section 5 we use the necessary and sufficient condition to derive a lower bound on the

number of monomials in a threshold function. The lower bound is expressed in terms of the

spectral representation of a Boolean function. We find that Boolean functions that have an

exponentially small spectrum are not polynomial threshold.

In Section 6 we exhibit a family of functions that has an exponentially small spectrum;

we call them 'semi-bent' functions. We construct a function which is both semi-bent and

symmetric to prove-that PT is properly contained in LT 2 .

In Section 7 we show how the lower bound technique can be extended to get a result in [5]

4



that fT 2 C fT 3 . Hence, for bounded weight circuits we have:

LT1 CPT, C fT2 C PT 2

Finally, we address some open problems.

2 Simulation of Polynomial Threshold Functions

It is a well known result that PARITY (as well as other symmetric functions) is in LT2

[5, 111. From this fact it follows that a polynomial threshold function can be simulated by a

depth 3 circuit of linear threshold gates. The idea is to compute the monomials using depth

2 circuits and combine the monomials in the gate in the third layer.

What we will show here is that depth 2 is enough:

Theorem 2.1

PT _ LT2

Proof: The idea is to notice that PARITY does not require the full power of a depth

2 circuit of linear threshold gates. Actually, PARITY can be realized by a set of linear

threshold elements in the first layer while in the second layer we need only to sum and add

a constant to get the desired result. Namely, we do not have to use the threshold operation

in the second layer.

Example: Let f(X) = x1 ED x 2 . Let F1 (X) = -1 - X1 - x 2 and F2 (X) = -1 + xI + x 2 . It

can be verified that:

f(X) = 1 + sgn(Fi(X)) + sgn(F2(X))

Note that we are using the {1, -1} representation instead of {0, 1}, respectively.

The above is true in general for PARITY of n variables. In the general case we need up to

n + 1 linear threshold gates in the first layer and again only summation and addition of a

constant in the second layer. Using this observation a polynomial threshold function can be

5



simulated-by depth 2 linear threshold circuit in a way similar to that done with depth 3. 0

Proving containment of polynomial threshold functions in LT turns out to be a very easy

problem compared to the problem of proving that this containment is proper; the latter

requires proving lower bounds. The rest of the paper is devoted to the development of a

technique for getting lower bounds for polynomial threshold functions and the application

of this technique to getting separation results.

3 Polynomial Representation of Boolean Functions

In this section the representation of Boolean functions as polynomials over the field of rational

numbers is presented.

Definition: A Hadamard matrix of order m, to be denoted by H,, is an m x m matrix of

+1's and -l's such that:

H,,,H = mIm (1)

where I.. is the m x m identity matrix. The abovc, definition is equivalent to saying that

any two rows of H are orthogonal.

Hadamard matrices of order 2 k exist for all k > 0. The so called Sylvester construction is as

follows [9]:

H, =[1]

H2=

H2+ =[H2: -H2,, (2)

Definition: Given a Boolean function f of order n, p is a polynomial (with coefficients over

the field of rational-numbers) equivalent to f iff for all X E {1,-1}":

f(X) - p(X)

.. . .-: |- m I6



As an example, let f = E) X2; that is, f is the XOR function of two variables. It is easy

to check that in the {1, -1} representation p(x 1 , X2 ) = xIx 2.

Notice that for every Boolean function f, the polynomial p is linear in each of its variables

because x2 = 1 for x E {-1,1). It is known that every Boolean function has a unique

representation as a polynomial [1, 81. This representation is derived by using the Hadamard

matrix, as described by the following theorem.

Theorem 3.1 Let f be a Boolean function of order n. Let p be a polynomial equivalent to

f. Let A2. denote the vector of coefficients of p. Let P2, denote the vector of the 2" values

of p (and f). Then:

1. The polynomial p always exists and is unique.

2. The coefficients of p are computed as follows,

A2m = 1H 2 nP 2,

Proof: The proof is constructive. The idea is to compute A2. by solving a system of linear

equations. Let us start by computing the coefficients of p, for f being a function of one

variable:

p(x1 ) = ao + aix1

and,

p(l) = ao+a,

p(-1) = ao-a,

Clearly,

P2 = H 2 A 2  (3)

and by (1),
1H

A 2 = H 2 P2  (4)
2

7



The above can be generalized to n variables by induction on n. Assume true for n

P . = H2.A2-

For (n+l), consider the different values of Xn+ and get

= H 2 -+1 A 2-+1

Hadamard matrices are nonsingular; thus, for any given f a unique p (defined by the vector

of coefficients A2-) always exists. 0

Example: Consider the function f of 3 variables,

f(X 2, 3 ) = ( A X3 ) V (xi A X2 ) (5)

By Theorem 3.1,

p(x, x2, x 3 ) = 8(2 + 6xi + 2x 2 - 2xix2 + 2X3 - 2xj 3 + 2X2 X3 - 2xlx 2 X3 ) (6)

The entries of the vector A are denoted by {a, I ct E {0, 1}nj and called the spectral repre-

sentation of a function. Note that ac is the coefficient of X" in the polynomial representation
where X' = 12 ... X-".

The above method is applicable not only to Boolean functions but also to any function of

the form f: {1,-1}n .

4 Necessary and Sufficient Conditions

We use the polynomial representation of Boolean functions that was developed in the previ-

ous section to derive a necessary and sufficient condition for a function to be an S-threshold

function, for arbitrary S. This result turned out to be a generalization of a known result for

8
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linear threshold functions 12, 6, 10].

Let f(X) = sgn(F(X)) be a threshold function. Without loss of generality, assume that

F(X) # 0 foi aji X E {1, -1}n. The following simple lemma enables us to express the

relation between f(X) and F(X) in a global way. That is, instead of having 2 n conditions

we have only one:

Lemma 4.1 Let f(X) be a Boolean function and let F(X) # 0 for all X E {1, -1}', then

f(X) = sgn(F(X)) VX E {1, -1}n (7)

iff

I F(X) I " f(X)F(X) (8)
XEII,-1}- XE{l.-1}

n

Proof: Suppose there exists X, that violates (7); that implies (F(X) $ 0 for all X) that

I F(X 1 ) 1> f(X 1 )F(X)

Hence, (8) is also not true because violation in equation (7) can only Aecrease the value on

the right hand side of (8). Clearly, if (7) is true so is (8). 0

Lemma 4.2

E { 2 n ifca = all-O vector
XEJI,-I}n 0 else

Proof. Follows from the fact that X* corresponds to a row of a Sylvester type Hadamard

matrix (see Theorem 3.1).

The necessary and sufficient condition follows from (8) by using the polynomial representa-

tion of a Boolean function.

Theorem 4.1 Fix S C {0,1}'n. Let F(X) = ESw X ' . Let f(X), X E {-1,1}'n, be a

Boolean function with spectral representation {a, I a E {0, 1}'}. Then:

f(X) = sgn(F(X)) VX E {1, -1}'n

9



if-

E jF(X)j=2'Zw,ac Ii
Xe{1,-i}" crES

Proof: By the Lemma 4.1 it is enough to show that

Z f(X)F(X) = 2' F wca,
XE{1,-1} OES

We write f(X) as a polynomial:-

f(X) = X'

and get that the constant term of f(X)F(X) is Fos w a. llrn- the result, foilows fron

Lemma 4.2.

Theorem 4.1 is interesting because it s-ggests that in .- threshold function " ," .chtrac-

terized by the set of spectral coefficients that correfpord to S.

Theorem 4.2 Let fl and f2 be S-threshold funct:ons u'ith {a' I a E '1'. -..

be their spectral representation, respectit'cly. Thrrn f, .V) = f 2(X) for ,.': \ n{. - } iff
ala 2 for all a E S.

Proof. Suppose f, = f2. By..the uniqiir-.s of the spectral repre-ental, w. -Fheoren 3.1) we

get the 'only if'. Now suppose a' = a2 for all a E S. By T'h,,,r,-m ; ad i h assumption

that both f, and f2 are S-tlit-holl we get that there exi-' a ,,t 4,t weights that satisfies

(10) for both f, and f2. lence, F, OX = F2(X) for all X ' I. -'} ". C

Corollary 4.1 Cons)dr thi, ,, I C {0,1}1 n. / t ,', a-: b, Roolcan functions of n

variables. If a' = n." for aIt o E S. then eithfr both ,'4ni 'id rf, .>-thr,.hold or both are

not S-threshold.

One application of ihi above is counting the wriii ,r f dilferent S-threshold functions.

Theorem .1.3 Fix S ,= C 10, Q ' . Thr ,zr at fit ruo. ,t1 diff-rrcnt S-threshold functions.

1 (0



Proof: It can be shown that for all a E {0, 1}, a, can assume at most 2' different values.

Hence, there are at most 2nISI different sets of IS I spectral coefficients. Thus, the result

follows from Corollary 4.1 . 0

The above turned out to be a generalization of a known [6, 10] upper bound on the number

of linear threshold functions for which I S I-- n + 1.

5 Lower Bounds

The necessary and sufficient condition that is derived above is used to derive lower bounds on

the number of monomials in a threshold function, again, by using the spectral representation.

Let f(X) = sgn(F(X)) be an S-threshold function, namely,

F(X) = 1_, x *
aES

We want to find lower bounds for S I as a function of the spectral representation of f(X).

Lemma 5.1 For all a E S:

2' 1w,,< F(X)I
XEII,-IO-

Proof: First we prove the statement for a being the all-O vector:

Z IF(X)I Z F(X)- >i: F(X)
X f1, -- F(X)>o F(X)<

0

E Z F(X) -2 1 F(X)
XE{1,-1}n  F(X) <O

(a) n<

m~ (-)2Woo...oo- 2 E F(X)

F(X)<o

> 2nWoo...oo

11



Note that (a) follows from Lemma 4.2. The proof for arbitrary a follows from the fact that

S 1 X1 J= 1, hence:

F(X) 1=1 X 11F(X) 1=1 X"F(X)

Hence, we can make any w,, be the constant term without changing the value of IF(X) 1. If

w,< 0 we take -F(X) and get the result.0

Theorem5.1 Let f (X) = sgfl(F-,CswQXa) be an S-threshold function and let f{a, a E

{0, 1}n} be its spectral representation; then

c*ES

where

and

ati max Ia,,
cvES

Proof: We first prove (i). By Theorem 4.1 and Lemma 5.1, for all a E 5:-

W. w~
caES

We sum the above inequality over all a E S and get:

EZIwQI ! I S I Ew~a,
OaES cxES

ceES

So we get (i) . For (ii), just notice that p, : 0 and E~c pE

We summarize this section by:

Corollary 5.1 Fix-any c > 0. Let f (X) be a Boolean function of n variables. if laW < 2-7

for all a E {0, 1I}n, then, for n svfficiently large, f (X) is not a polynomnial threshold function.

12



6 Separating by Semi-Bent Functions

We use Corollary 5.1 to get separation results by looking at functions that have an exponen-

tially small spectrum.

Definition: A Boolean function f(X) is called 'bent' [3, 9, 14] iffIa, 1= 2-' for all

a E {0, 1}'. Notice that bent functions are defined for even n only.

Proposition 6.1 The Inner Product Mode 2 (1P2) function, i.e.,

f (X) =(xiA X2 ) E)(X 3 AX4 ) e... ((X 2 nA X2 n)

is a bent function.

Proof: See [9]. A sketch of an alternative proof: it can be proven by induction on n that

IP2 when written as a vector is actually an eigenvector (with eigenvalue = 2n) of a Sylvester

type Hadamard matrix of order 2 2n . Hence, lajI = 2-n for all ca E {O, l}'n.0

Theorem 6.1

PT, c PT2

Proof: 13%- (crolla--% 5.1 and Pio'.osit~on 6i -- Rut it is in

PT2  :. \~ are r~p.In iri .lil In~d~ h NRi on

Ole ce&I1 -er.

Dofnit ion: Let ~ ~ l a ~tir e

ii .1) 11 f ]unct ion is also setfli-))erlt fn ii

131



Proof: The fact that PT1 _ LT 2 is proved in Theorem 2.1. To show that it is a proper

containment we must find a function which is in LT 2 but not in PT. Every symmetric

function is in LT2 [5, 111 and every semi-bent function is not in PT1 (Corollary 5.1). Hence,

a natural candidate for such a function will be a symmetric semi-bent function. Indeed, a

symmetric semi-bent exists for all n as stated in Proposition 6.2 below. 0

Consider the function:

f (X) = (x 1 A X2) (D (xl A X3) (D... (D (X,,- I A X,,) (

Hence, f(X) consists of the sum mod 2 of all the (n) possible AND's between pairs of

variables. We call this function the Complete Quadratic (CQ) function. Clearly, CQ is a

symmetric function.

Proposition 6.2 CQ is bent for n even, and semi-bent for n odd.

Proof: Actually we can compute the exact spectral representation of CQ for every n, see

Appendix B.

7 Lower Bounds for Circuits

Here we use the necessary and sufficient condition to derive lower bounds for the number of

gates in depth 2 circuits of linear threshold gates.

A depth 2 circuit consists of a single gate that we call t (its output is the output of the

circuit) together with a set of k gates whose outputs are inputs to t. The i'th gate in the

first level of the circuit is denoted by ci. Hence, the function computed by the circuit is

t(X) = t(Cl(X), C2 (X),. .. ,ck(X)); where t and ci for all i E {1..k} are linear threshold

gates.

We use the same ideas as in Section 4 and get:

Theorem 7.1 Let
k

T(X) = wo + wc,(X)

!-1



1

and assume T(X) 0 0 for all X E {1,-1}". Let t(X) = s-.. >..pftr(,i

representation of t(X) is {a, Ia E {0,1}n} and the spctral " .s

{b IaE{0,1},}. Then

kIT(X) 1= 2n woaoo... 00- fE , i E qt,'," ,12)

XE{1,-I}n 1=1 ,E "0 I"

Proof: The proof is similar to the proof of Theorem 4.1. 0

We show that the result in [5] that IP2 V' LT72 can be derived by using the fact that the

left hand side of (12) is greater or .qual 2", hence:

Proposition 7.1 Let t(X) = t'cl(X), c 2 ( V),.. .. ck(X)), then:

1 - wVoao...oo0
k -

where

,i,:- max jwIEJ1 ... k

and

=max Z a,b'j
iE J ..k j aE{o,11}

a, and b,, ),ave the same r.oan!.:i, a.i in Theorem 7.1.

Now I-. t(X) = I-2. ;h( fact ;hat 1F2 i% .T2 follows from:

t. is bounded b a nolynomial in n.

2. a., .. for 1P'_ is exron. 6t!lv sinal.

3. Using the le-n-ma b- Lin's. -1, p. SS, ibont ladamard matrices it can he shown that

,'s-purnentia, k small

Ile above Tcc l-,, i,:e s j. S e for g,'ting lower bounds on k whenever t! m aid The

.'s a !emril' of gates/cizcuit.; result in - which is exponentiallv small.
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8 Open Problems

The main open problem is to find the exact relation between the class PT' = UdEAr PT and

the well known class NC 1 . Here, we were concentrating on the relation between subclasses

of PTo and subclasses of LT ° , with:-Ahe goal of getting separation in LT'. In particular we

have the fok!owing conjecture:

Conjecture: Foi ;0l d E " LTd C PTd C LT 2d

Acknowledgement: [ would like to thank Professor J. W. Goodman for his

helpful comments. The support of the U.S. Air Force Office of Scientific Research is gratefully

acknowledged.
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Appendices

A Examples

Here we give some examples of polynomial threshold functions which are not linear threshold

functions. To show that a function is polynomial threshold we need to give the explicit F(X),

while proving that a function is not linear threshold requires the application of the necessary

and sufficient condition developed in the paper. We will work with Boolean functions of n

variables but the reader should think of n being arbitrary.

We start with a trivial example of the well known PARITY function.

Definition:
PARITY(X)= -1 odd number of -l's in X

1 otherwise

Clearly, PARITY(X) = XIX2... x,n, so we even do not need the threshold to compute PAR-

ITY. To show that PARITY is not in LTI just notice that the spectral coefficients which

correspond to the constant and linear terms are all 0. So there is no F(X), such that

F(X) 0 for all X E {1, -1}. that will satisfy the necessary and sufficient condition,

because the right hand side of equation (10) is 0.

The second example is a bit more complicated.

Definition: Define the following function over n variables,{ -1 if the number of -l's in X is kEXACTS(X)
1 1 otherwise

Proposition A.1

EXACT7k E PT

Proof: Consider the Boolean function of 2n variables that is defined as follows: It is -1

iff the number of -l's in X is effai to the number of l's in X. Clearly, this function is

17



EXACTn (X) we show that this function is in PT and the proof follows by reducing

EXACT to EXACT 2.

Let .

F(X) = (n - 1) + XIX 2 + X1X 3 +... + X2n-_X2n

Namely, F(X) consists of a constant term (n-i) and all the (2) monomials of two variables.

We will show that EXACT "(X) = sgn(F(X)).

Suppose X consists of (n + m) -I's and (n - m) l's. Notice that we want F(X) < 0 iff

rn = 0. We calculate the value of F(X) as a function of m. We look at the value of the

terms (the constant term is excluded) and get that the number of terms in F(X) that are

-1 is exactly

n 2-m2 = (n + m)(n- m)

and the rest of the terms are 1. Hence, for X having m -1's,

F(X) = (n -1) + (2) - 2(n2 -m2)

= 2m 2 - 1

Clearly, EXACT 2(X) = sgn(F(X).

Notice that EXACTS(X) = EXACTn"(X, Y), where Y is a vector of.length n that consists

of k l's and (n - k) -l's, e.g.

k (n-k)

That is, EXACTn(X) is in PT 1 .

Now we show that EXACT is not linear threshold.

Proposition A.2

EXACTn V LTI

Proof: We will show that the function EXACT 2n is not in LT 1 . It can be shown that the

spectral coefficients of EXACT2n that correspond to the linear terms are all 0 and the one

18



that corresponds to the constant term is

aoo...l oo 22n

Assume the function EXACTn" is in LT, use Theorem 4.1 and Lemma 5.1 and get that

2 nI woo .oo1: 2 nI woo .ooI aoo .ooI

Hence, we get that I aoo...oo 1> 1 which is a contradiction. 0

The third example is related to linear codes [9].

Definition Let C be a linear [n, k] block code. Then the characteristic function of C is

- ifXECIc(X){
1 otherwise

Here we only state the result without a proof. The idea in the proof is to use the represen-

tation of linear block code that was developed in [1].

Proposition A.3 Let C be a linear block code; then Ic E PT and Ic V_ LT1.

Example: See [1, 91. Let C be the [7,4] Hamming code. The parity check matrix of C is

110

101

011

HT =  111

100

010

001

and

Ic(X) sgn(3 - XIX 2 X 4XS - X I X3 X4 X 6 - X2 X3 X 4X 7 )

In general, for an [n, k] code we need only (n - k + 1) terms in F(X) that are easily

calculated from the parity check matrix of the code.
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B The Spectrum of the Complete Quadratic Function

The Complete Quadratic function is defined -in Section 6. Here we prove Proposition 6.2.

We start by giving an equivalent definition of the function CQ,

Proposition B.1

CQ(X)= I1 no. of -l's inX= Oorl mod4{ -1 otherwise

Proof: Suppose there are m -l's in X. Since a pair in equation (11) is -1 iff both variables

are -1, we have exactly (7) pairs which are -1. Hence, the value of CQ(X) is determined by

the evenness of (7M) and the result follows. 0

First we calculate the spectrum for the case when n is even.

Proposition B.2 Let {a, I a E {0, 11) be the spectral representation of CQ(X). Assume

that n is even, then
Ia -n- 2-,1 0, 1}In

IaI=2, Va EO1

Proof: The proof is by induction on n. For n = 2 we have

CQ(X2 , X2) = + X1 + X2 - XiX 2 )

Assume true for n and show that the statement is true for (n + 2). We use the same notation

as in Section 3, namely, P2- represents the vector with the values of CQ and A2. represents

the vector of the spectral coefficients of CQ. Using Proposition B.1 it can be shown that

P2-+2 can be expressed as a function of P2.:

P2-

P2+2 P2 n

P 2 1

-P 2 -

20



where

P2 o2 P2-

X 2 is the vector representaion of PARITY(X) = xlx 2 ... x, and 'o' is bitwise multiplication.

Hence, by Theorem 3.1

1
A 2-+2 - +H 2.+ 2 P 2.+2

H 2. H2 . H2. /-, P2-

1 H2- -H 2. H 2 , -H 2- P 2m

2n+2 H2, H2. -H 2n -H 2. /2n

H 2m  -H 2, -H 2. H 2- -P2-

A2 n

1 A2-

2 A 2 n

where A2- is the reflection of A21. Hence, if the result is true for n it is also true for n + 2.

0

Example: Using the above recursive description of the spectrum of CQ(X) we can calculate

A 16 from A 4:
AT= 1-(1, 1, 1,-1)

And

A = 1(-1,1,,1, 1,,1,-I, 1,1,1,-I, 1,-i, -1,--)
16 4

The above is true for n even. For n odd we have,

Proposition B.3 Let {ac I a E {0, 1}'} be the spectral representation of CQ(X). Assume

that n is odd then

Iac I=0 or 2-1 V E {0,1}

21



The proof is similar to the even case. We use induction on n and can write the recursive

description of the spectrum.

Example: Let n = 3 then

CQ(xi,X 2,X 3 ) =(X + X2 + X3 - XX 2 X3 ).
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